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a b s t r a c t 

The aim of this contribution is to present a multiscale framework that incorporates required spatial dis- 

tribution of strain field from RVE into the macro level by adoption of appropriate enrichment functions 

and corresponding additional kinematic variables from the RVE level. The basic idea of macroscopic kine- 

matic variable in advanced multiscale homogenization methods is comprehensively examined, and while 

the macro-based approach has been available in the literature, the new proposed micro-based scheme 

is explored in this study. Furthermore, the proposed approach is employed to formulate the new “En- 

riched MultiScale Homogenization Method (EMSHM)”, based on the micro-based scheme. The key steps 

of adoption of appropriate additional kinematic variables, scale transition procedure and applying bound- 

ary conditions are also explained. Afterwards, EMSHM is applied to cases of cracked RVEs and severe 

strain gradient in the vicinity of macroscopic crack, with the inspiration of Heaviside (H-EMSHM) and 

crack tip (T-EMSHM) enrichments of the extended numerical methods. Accuracy of H-EMSHM with re- 

spect to the direct numerical modeling is explained with one and two dimensional examples. Numerical 

results of T-EMSHM have shown superior advantageous over the first order homogenization method from 

both the spatial distribution and magnitude of stress near the macro crack tip region. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Theoretical and numerical complexities associated with new 

developments in different fields such as structural mechanics, 

aerospace, material science, bio-mechanics and chemistry have 

challenged the classical framework of continuum mechanics, espe- 

cially in cases that several scales are involved. Accordingly, multi- 

scale methods have been developed over the years to overcome the 

computational problems related to multiple scales in order to de- 

termine the macroscopic solution from the microscopic response, 

and to capture the micro behavior of material. It should be noted 

that the terms micro scale and macro scale are used here to repre- 

sent the lower and higher scales of a multiscale solution, and they 

may include different length scales of a problem such as nanome- 

ter, micrometer, millimeter, etc. 

Multiscale methods generally include sequential and concurrent 

solutions ( Tadmor and Miller, 2011 ). In the first case, the micro 

problem is solved, and its results are used as input variables for 

the macroscopic solution. In a concurrent method, both scales are 

solved simultaneously, which require an appropriate correlation 
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between the microscopic and macroscopic scales. Sequential meth- 

ods are computationally more efficient than the concurrent solu- 

tions, however they usually suffer from many restrictions of the 

classical continuum theory. 

Concurrent methods are also subdivided into the hierarchical 

and partitioned-domain approaches ( Tadmor and Miller, 2011 ). In 

partitioned-domain methods, while the medium is generally solved 

with a macro level governing equation, another theory/resolution 

is employed to handle a particular part of the domain. In con- 

trast, hierarchical methods consider all resolutions (from different 

scales) at the same time and position. Partitioned-domain methods 

are mostly used in cases where the classical continuum theory is 

violated in particular sub-regions, while hierarchical methods, also 

called homogenization methods, incorporate the micro level effects 

in the macro solution at the whole domain. Both methods can be 

employed in a problem simultaneously. In the present study, ho- 

mogenization methods are examined and extended by adoption of 

new kinematic variables to allow for analysis of micro-scale dis- 

continuities or higher gradients. 

The first order homogenization is based on the classical con- 

tinuum theory which assumes the locality condition, where the 

stress in any point is solely related to the strain at that point. To 

further incorporate the microscopic effects in the continuum the- 

ory, nonlocal and generalized continua theories have been devel- 
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oped ( Bažant and Jirásek, 2002 ). In multiscale framework, integral 

type nonlocal based methods are introduced nonlocal constitutive 

law ( Tognevi et al., 2016; Yvonnet and Bonnet, 2014 ), and general- 

ized continua are subdivided into higher grade and higher order 

theories ( Forest, 2002; Fish and Kuznetsov, 2010; 2012 ) based on 

the type of incorporation of micro-effects. In higher grade theories, 

higher spatial derivatives (i.e. gradient of strain) are used as addi- 

tional terms in the weak formulation to consider the micro effects 

( Fish and Kuznetsov, 2010; Kouznetsova et al., 2004 ), while higher 

order theories use additional degrees of freedom (that are explic- 

itly introduced independent of the displacement field), e.g. micro- 

morphic ( McVeigh et al., 2006; Vernerey et al., 2007 ) and Cosserat 

( Forest and Sab, 1998; Forest et al., 1999; 2001 ) theories. A well 

review paper by Forest (2002) examines different homogenization 

techniques based on the continuum theory used in macro and mi- 

cro levels. Among them, the first order multiscale homogenization 

has been vastly employed in a wide range of linear ( Hassani and 

Hinton, 1998b; 1998a ) and nonlinear simulations ( Miehe, 2002 ), 

shape memory alloys ( Damanpack et al., 2015 ) and bio-mechanics 

problems ( Rohan et al., 2012 ). Furthermore, in nonlinear problems, 

homogenization based on the model reduction approaches were 

proposed to efficiently combine analytical and computational pro- 

cedures ( Michel and Suquet, 2016 ) via some simplifications. Among 

them, transformation field analysis (TFA) has been established by 

piecewise constant inelastic strain ( Dvorak et al., 1994 ), and suc- 

cessfully developed to nonuniform transformation field analysis 

(NTFA) ( Roussette et al., 2009; Michel and Suquet, 2003; 2016 ), as- 

suming non-constant distribution of inelastic strain. 

Despite the good agreement between the first order homoge- 

nization and reference solutions in many cases, this method should 

not be used in conditions where scale separation is violated, par- 

ticularly in severe strain gradient and strain localization conditions 

inside RVE. Considerable effort s have been dedicated to enhance 

the multiscale homogenization. In most cases, extra variables in 

the form of independent degrees of freedom or higher gradient 

terms in the weak formulation were considered to capture spe- 

cial effects in micro and macro levels. In the most general case, 

the multiresolution approach ( Liu and McVeigh, 2008; Tang et al., 

2013 ) based on the micromorphic theory adopted 12 independent 

additional degrees of freedom to consider dislocation effects, soft- 

ening due to shear band, etc. in RVE. Vernerey et al. (2007) showed 

how the multiresolution scheme could degenerate to other meth- 

ods such as micromorphic, Cosserat and strain gradient models, 

where additional degrees of freedom could be associated with ro- 

tation and/or stretch of the underlying RVE. 

The second order mutiscale computational homogenization was 

developed by Kouznetsova et al. (2004) , based on the assumption 

of gradient of deformation gradient to explore strain localization in 

RVE, but it was incapable of considering strong localizations. Later, 

the homogenization method was extended to contemplate severe 

localization in RVE with modifying the macroscopic deformation 

gradient tensor ( Bosco et al., 2014; 2015 ). In this case, the displace- 

ment discontinuity was introduced as an independent macroscopic 

kinematic variable, applied on RVE to resolve challenges related 

with the softening in RVE. Similar approaches to associate soft- 

ening in RVE with the macroscopic traction-separation law of co- 

hesive crack were proposed with different underlying assumptions 

due to the source of localization, RVE boundary condition, and ad- 

ditional constraint to hold objectivity ( Nguyen et al., 2012; Coenen 

et al., 2012a; 2012b; Sánchez et al., 2013; Toro et al., 2014; Sánchez 

et al., 2011 ). Comprehensive discussion was presented by Sánchez 

et al. (2011) to express how to apply an appropriate macroscopic 

kinematic variable on RVE, in addition to the conventional macro- 

scopic strain, as a framework for multiscale homogenization. 

In contrast to methods that use additional independent de- 

grees of freedom ( Vernerey et al., 2007 ) or need C 1 continu- 

ity ( Kouznetsova et al., 2004 ) to consider strain gradient in RVE, 

the computational continua approach, proposed in ( Fish and 

Kuznetsov, 2010 ) and revisited in ( Fish et al., 2015 ), introduced 

the variational formulation for non-constant deformation gradient 

based on the nonlocal quadrature integration. While this method 

had several advantages of the gradient formulations, it was inca- 

pable of considering nonlocal effects ( Fish and Kuznetsov, 2010 ). 

Moreover, the concept of multiscale enrichment based on the 

partition of unity ( Fish and Yuan, 2005 ) was introduced to con- 

sider higher gradient approximation in a local macro crack tip do- 

main, in which micro-fluctuations were superimposed on the stan- 

dard FEM displacement field using the PU property over the macro 

elements and the basic functions of the asymptotic mathematical 

homogenization as enrichment functions. 

All the mentioned multiscale methods use higher derivatives 

( Kouznetsova et al., 2004; Fish and Kuznetsov, 2010 ) or crack dis- 

placement opening ( Sánchez et al., 2013; Bosco et al., 2014 ) of 

macroscopic field variable as additional terms in the weak for- 

mulation, or use independent degrees of freedom ( Fish and Yuan, 

20 05; Vernerey et al., 20 07 ) to represent the intended phenomena. 

Generally, methods that introduce additional independent degrees 

of freedom are more robust and flexible to deal with complex 

problems, despite having higher computational efforts. Accordingly, 

researchers have tried to use the minimum number of additional 

degrees of freedom, with meaningful macroscopic kinematic vari- 

ables from the macro scale, along with adoption of appropriate 

scale transition approaches. The procedures that use additional 

terms from the macro scale considerations, are called the macro- 

based kinematic variable approach (in this study), and has been 

well explained in Sánchez et al. (2011) . In contrast, the present 

work introduces, for the first time, a new viewpoint by defining 

the new kinematic variables from the microscopic phenomena in 

the RVE level, that is called hereafter the micro-based additional 

kinematic variable approach. The key characteristics of the new 

kinematic variables in the macro-based and micro-based perspec- 

tives are that they are initially associated with meaningful phe- 

nomena in macro or micro scales, respectively. It will be discussed 

that the new approach is more flexible and robust in developing 

accurate and efficient first order multiscale homogenization. 

In the present study, the general framework of micro-based 

kinematic variables is explained and then applied to two complex 

problems of cracked RVE and singular strain gradient in RVE. In the 

next section, the first order multiscale homogenization is briefly 

reviewed. Then, the scale transition concepts are discussed, and the 

proposed enriched multiscale homogenization method (EMSHM) is 

introduced according to the micro-based kinematic variables. Af- 

terwards, this framework is used to formulate cracked RVE and 

singular strain fields near a macroscopic crack. Different numeri- 

cal examples are comprehensively examined to assess the perfor- 

mance of the proposed EMSHM, and to justify the concluding re- 

marks. 

2. First order multiscale homogenization 

The first order homogenization, broadly investigated in the lit- 

erature (e.g. ( Nemat-Nasser and Hori, 1998; Miehe, 2002 )), is re- 

viewed in this section. In this method, the strain field in an RVE 

is the superposition of macroscopic strain ε̄ i j and complementary 

strain field ˜ ε i j due to the micro fluctuations in the RVE, 

ε ζ
i j ( x , y ) = ε̄ i j ( x ) + ˜ ε i j ( y ) (1) 

where the superscript ζ in ε ζ
i j 

denotes that the strain is defined 

in the heterogeneous medium and is assumed to be highly oscil- 

lating. The macroscopic spatial variable x defines the location of 

RVE in the macroscopic domain and the microscopic variable y 
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varies in the RVE. In the first order computational homogenization 

(CH1), having assumed a constant macroscopic strain on the RVE, 

the macroscopic quantity ε̄ i j ( x ) becomes independent of y . In CH1, 

the macroscopic virtual power density field, δ p̄ ( x ) , is a function of 
ε̄ i j ( x ) , and is denoted by δ p̄ 

(
ε̄ i j 
)
, as ( Tian et al., 2010 ) 

δ p̄ 
(
ε̄ i j ( x ) 

)
= 

1 

| ��| 
∫ 

��

δp ( x , y ) d�

= 

1 

| ��| 
∫ 

��

σi j ( x , y ) δε 
ζ
i j ( x , y ) d� (2) 

where �� represents the RVE domain, | ��| is the RVE volume, 

and δp(x , y ) is the virtual power density of material in the RVE. 

Substituting (1) into (2) , the following macroscopic virtual power 

density is achieved 

δ p̄ 
(
ε̄ i j ( x ) 

)
= σ̄i j ( x ) δε̄ i j ( x ) (3) 

that denotes the Hill-Mandel lemma with 

σ̄i j ( x ) = 

1 

| ��| 
∫ 

��

σi j ( x , y ) d� (4) 

Additionally, condition (5) must be applied to hold Eq. (3) ( Miehe, 

2002 ) ∫ 
��

˜ u i ( y ) n j d� = 0 (5) 

where �� is the boundary of RVE, n j is the unit normal vector on 

�� and 

˜ u ( i, j ) ( y ) = 

1 

2 

[
˜ u i, j ( y ) + 

˜ u j,i ( y ) 
]

= ˜ ε i j ( y ) (6) 

Details of deriving relations (3), (4) and (5) are explained in 

Appendix A . Condition (5) can be applied in different ways, but in 

practice, appropriate boundary conditions are imposed on the RVE 

to ensure (5) is satisfied automatically ( Miehe, 2002 ) that is listed 

in Appendix B for standard RVEs. The periodic boundary condition 

results in the minimum error in conventional problems ( Miehe, 

2002 ). 

3. Additional kinematic variables and scale transition 

First, a brief review of general procedure of the first order and 

more advanced multiscale computational homogenization, as the 

basis of macro-based kinematic variable procedure, is described, 

and then, the basic concepts of the developed micro-based method 

are explained. 

3.1. Macro-based kinematic variable 

In the conventional multiscale homogenization, the deforma- 

tion gradient ( Kouznetsova, 2002 ) (or equivalently the strain field 

in the small deformation theory) is assumed to be superposed of a 

kinematic macroscopic variable (e.g. deformation gradient or strain 

tensor) and micro-fluctuation terms due to any heterogeneity, in- 

cluding crack, porosity, inclusion and dislocation. In the simplest 

form, the macroscopic strain is constant on RVE and the strain in 

the micro level is defined with (1) . Additionally, the boundary con- 

ditions of RVE are established with the kinematic scale-transition 

relation. For example, the macro-micro strain relation 

ε̄ i j ( x ) = 

1 

| ��| 
∫ 
��

ε ζ
i j ( x , y ) d� (7) 

leads to the constraint (5) on RVE ( Miehe, 2002 ). In more advanced 

homogenization methods (e.g. second-order multiscale homoge- 

nization), relation (1) is modified to include additional macroscopic 

terms. Accordingly, Eq. (1) can be generalized to ( Sánchez et al., 

2013 ) 

ε ζ
i j ( x , y ) = ε̄ i j ( x ) + � ( χ1 , χ2 , ... ) + ˜ ε i j ( y ) (8) 

where χi (i = 1 , 2 , ... ) represent additional macroscopic variables 

and � is an operator in terms of χ i . Different additional macro- 

scopic variables χ i are introduced to modify the classical ho- 

mogenization method, such as the gradient of deformation gradi- 

ent ( Kouznetsova, 2002 ) and the macroscopic crack opening dis- 

placement ( Sánchez et al., 2013; Bosco et al., 2014 ). Operator � is 

adopted based on the selected additional macroscopic variables. 

Subsequently, an appropriate scale transition procedure should be 

adopted as an extra constraint due to the selection of additional 

kinematic variables. This procedure leads to new boundary con- 

ditions on RVE, as comprehensively explained in Sánchez et al. 

(2013) for the case of material failure analysis in this framework. 

After introducing the macroscopic kinematic variables in the 

multiscale computational homogenization, the work conjugate of 

each macroscopic kinematic variable is defined using the Hill- 

Mandel condition, introduced in Eq. (2) . This principle leads to the 

macroscopic stress (4) in the first order homogenization. In the 

general case of (8) , the appropriate work conjugate of each addi- 

tional macroscopic variable, χ i is extracted using the macro-micro 

strain energy equality, as explained in Kouznetsova (2002) for the 

second order homogenization and Sánchez et al. (2013) for the co- 

hesive crack. 

Briefly, the general procedure employed in the macro-based 

kinematic variable methods can be described as: 

• Step 1. Defining the microscopic strain field with the superposi- 

tion of macroscopic variables (including strain/deformation gra- 

dient and additional terms with appropriate operators) and the 

micro-fluctuation field, Eq. (8) . 

• Step 2. Defining the scale-transition procedure to relate the 
macroscopic kinematic variables to the microscopic displace- 

ment field (e.g. Eq. (7) ). 

• Step 3. Applying the appropriate boundary conditions to solve 
RVE with the help of operator defined in Stp1 and relations ob- 

tained in Step2 (e.g. constraint (5) ). 

• Step 4. Extraction of macroscopic work conjugate variable of 

each macroscopic kinematic variable from the Hill–Mandel 

principle (e.g. Eq. (4) ). 

One of the most important aspects of developing the first or- 

der multiscale homogenization is the way additional kinematic vari- 

ables should be selected in Step 1 to obtain better results. These 

additional terms are adopted according to the problem in hand 

and the phenomena which are taking place in the macroscopic do- 

main. The basic framework of this procedure is to consider the 

macroscopic variables that are already meaningful in the macro- 

scopic scale . It means that the meaning of the kinematic macro- 

scopic variables are already known from the macro (and NOT 

micro) continuum model. For example, in addition to the macro 

strain (deformation gradient), the well-known macroscopic vari- 

ables are the strain gradient (gradient of deformation gradient) 

and crack opening (in failure modeling). Accordingly, the relation- 

ship between macro and micro kinematic variables can be found 

based on the scale-transition kinematic operator. This perspective 

is demonstrated in Fig. 1 a. 

3.2. Micro-based kinematic variable 

As mentioned earlier, adoption of kinematic variable is a key 

step in developing an efficient multiscale method. In contrast to 

the existing macro-based approach, in this paper, the kinematic 

variables that are predefined and meaningful in the microscopic 

scale, emanate from the micro-scale to determine the response of 
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Fig. 1. Micro and macro based procedure of adopting macroscopic additional kinematic variable and solution procedure. 

equivalent macro homogeneous material. This framework allows 

for better interpretation of the final macroscopic kinematic vari- 

ables and different boundary conditions on RVE and is expected to 

be more versatile in capturing complex phenomena such as soft- 

ening, shear-band, dislocation, etc. within the RVE. This viewpoint 

is demonstrated in Fig. 1 b. 

It is important to note the difference between the mathemati- 

cal homogenization based on the multiscale asymptotic expansion 

( Fish et al., 1994 ) and the multiscale computational homogeniza- 
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tion ( Kouznetsova et al., 2004 ) methods to highlight the macro and 

micro based concepts. In the mathematical homogenization, the 

substantial goal is to find that “Is there any macroscopic governing 

equation whose response is the leading term of the multiscale asymp- 

totic expansion? ”, while the aim of the multiscale computational 

homogenization is “to find the response of the macroscopic stress 

by solving the RVE located at a macroscopic point subjected to the 

macroscopic kinematic variable ”. While both methods lead to ap- 

parently identical formulation for the first order case, they are dif- 

ferent in concept ( Nemat-Nasser and Hori, 1998 ), and result in dif- 

ferent formulations for higher order cases. In the proposed micro- 

based approach, the main idea is to enrich macro continuum level 

using the additional kinematic variables that are directly derived 

from the RVE level. Accordingly, the general framework to develop 

a new multiscale method, called Enriched MultiScale Homogeniza- 

tion Method (EMSHM) , is now presented. 

4. Enriched Multiscale homogenization method (EMSHM) 

In this section the general framework and formulation of 

EMSHM are explained. Two more practical applications of this 

method, the case of a singular strain gradient near a macroscopic 

crack tip and the effect of crack within RVE on the macro scale 

response are further developed and discussed. 

4.1. Microscopic governing equations 

In the enriched multiscale homogenization method (EMSHM), 

the macroscopic strain energy depends not only on the macro- 

scopic strain, but also to the additional terms associated with a 

particular phenomenon in RVE. As mentioned in the previous sec- 

tion, the fundamental differences of EMSHM with other available 

multiscale methods is in the concept and approach of determin- 

ing these additional terms that leads to the present interpretation 

of enriched macroscopic variables and boundary conditions, which 

provides a powerful and more versatile basis for analysis of com- 

plex problems that cannot be accurately solved by the first order 

multiscale homogenization approach. 

As mentioned earlier, the strain field in RVE in the first order 

multiscale homogenization is expressed with ε ζ
i j ( x , y ) = ε̄ i j ( x ) + 

˜ ε i j ( y ) and the macroscopic virtual power density δ p̄ 
(
ε̄ i j 
)
depends 

on ε̄ i j . The strain field in EMSHM is also written with the same 

approach, but based on a macro continuum material whose virtual 

power density, δp M , depends on not only ε̄ i j ( x ) , but also ˜ ε i j ( y ) ; 

( δp M 

(
ε̄ i j , ̃  ε i j 

)
). Notation δp M is adopted here to distinguish be- 

tween macroscopic virtual power density in the first order mul- 

tiscale homogenization and EMSHM. Having written the comple- 

mentary strain field ˜ ε i j ( y ) in RVE, the effects of complex phenom- 

ena such as singular terms are included in the macroscopic virtual 

power density. Accordingly, δp M 

(
ε̄ i j , ̃  ε i j 

)
can be expressed as, 

δp M 

(
ε̄ i j , ˜ ε i j 

)
= δ p̄ 

(
ε̄ i j 
)

+ δ ˜ p 
(
˜ ε i j 
)

(9) 

Additionally, ˜ ε i j is decomposed into the enhanced strain ε ∗
i j 

and 

symmetric displacement gradient u 1 
( i, j ) 

components, 

˜ ε i j = ε ∗i j + u 1 ( i, j ) (10) 

Substituting (10) into (1) , the total variation of the strain field is 

expressed with 

δε ζ
i j 

= δε̄ i j + δε ∗i j + δu 1 ( i, j ) (11) 

It is noted that almost the same expression was reported in 

Sánchez et al. (2011) for superposition of macro and micro scale 

strain fields. However, the additional term in Sánchez et al. 

(2011) was related to the macroscopic phenomena (e.g. macro- 

scopic crack). The differences will become clearer in the fallowing 

discussions. Furthermore, ε ∗
i j 

in (10) can be defined on the whole 

RVE domain, ��, or on any subpart of RVE domain, ��∗ , where 

��∗ ⊂ ��. 

Noting that the enhanced part, ε ∗
i j 
, of the complementary strain 

field ˜ ε i j comes, as an additional independent kinematic variable, 

from RVE to macro homogeneous medium, only ε ∗
i j 
should be used 

to determine the macroscopic virtual power density. Accordingly, 

˜ p 
(
˜ ε i j 
)
is replaced with p ∗

(
ε ∗
i j 

)
and Eq. (9) is modified to 

δp M 

(
ε̄ i j , ˜ ε i j 

)
= δ p̄ 

(
ε̄ i j 
)

+ δp ∗
(
ε ∗i j 
)

(12) 

To define an equivalent homogeneous material, its macroscopic vir- 

tual power density should be equal to the volume average of the 

virtual work exerted on RVE, 

δp M 

(
ε̄ i j , ε 

∗
i j 

)
= δ p̄ 

(
ε̄ i j 
)

+ δp ∗
(
ε ∗i j 
)

= 

1 

| ��| 
∫ 

��

σi j ( x , y ) δε 
ζ
i j ( x , y ) d� (13) 

Substituting (11) into (13) , 

δ p̄ 
(
ε̄ i j 
)

+ δp ∗
(
ε ∗i j 
)

= 

1 

| ��| 
∫ 

��

σi j 

(
δε̄ i j + δε ∗i j + δu 1 ( i, j ) 

)
d�

⇒ 

[
δ p̄ 
(
ε̄ i j 
)

− 1 

| ��| 
∫ 

��

σi j δε̄ i j d�

]

+ 

[
δp ∗
(
ε ∗i j 
)

− 1 

| ��| 
∫ 

��

σi j δε 
∗
i j d�

]

+ 

[
− 1 

| ��| 
∫ 

��

σi j δu 
1 
( i, j ) d�

]
= 0 (14) 

Considering that δ p̄ and δp ∗ are functions of just ε̄ i j and ε 
∗
i j 
, re- 

spectively, the following three basic equations are obtained from 

the fundamental lemma of variational calculus 

δ p̄ 
(
ε̄ i j 
)

= 

1 

| ��| 
∫ 

��

σi j δε̄ i j d� = 

(
1 

| ��| 
∫ 

��

σi j d�

)
δε̄ i j = σ̄i j δε̄ i j 

(15a) 

δp ∗
(
ε ∗i j 
)

= 

1 

| ��| 
∫ 

��

σi j δε 
∗
i j d� (15b) 

1 

| ��| 
∫ 

��

σi j δu 
1 
( i, j ) d� = 0 (15c) 

Eqs. (15a) and (15b) define the macroscopic stress work con- 

jugates of kinematic variables ε̄ i j and ε 
∗
i j 
. Comprehensive explana- 

tion of (15b) will be discussed later. The fundamental assumption 

in (15a) is that the macroscopic strain ε̄ i j ( x ) is constant on RVE. 
Consequently, the macroscopic stress σ̄i j is equivalent to the vol- 

ume average of stress on RVE 

σ̄i j ( x ) = 

1 

| ��| 
∫ 

��

σi j ( x , y ) d� (16) 

which is analogous to (4) for the first order multiscale homog- 

enization. Furthermore, (15c) defines the governing weak form 

equation on the RVE to compute the micro-fluctuation field 

δu 1 
i ( y ) . Appropriate boundary conditions are necessary to solve Eq. 

(15c) and to obtain objective results with respect to the size of 

RVE. 

The constraint derived in the first order multiscale homog- 

enization is not sufficient in EMSHM due to the existence of 

additional kinematic variables. Different methods have been re- 

ported in the literature to modify microscopic boundary conditions 

based on the additional macro-based kinematic terms, however 

they cannot be used in the present micro-based formulation. In 
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EMSHM, the required boundary conditions are directly derived in 

Section 4.2 based on simultaneous satisfaction of equilibrium equa- 

tion and relation (15c) . 

Remark 1. A relation similar to (12) is used in other advanced 

multiscale formulations, but with the key difference that in this 

work δp 
 is not expressed in terms of the macroscopic kinematic 

variables and should be determined based on the enhanced kine- 

matic variables from the RVE level in EMSHM. Moreover, a clear 

difference in the proposed formulation is in the definition of addi- 

tional kinematic variable ε ∗
i j 
in (11) . 

4.2. RVE boundary conditions 

The strong form of static equilibrium equation on the RVE level 

in the absence of body forces is expressed as, 

σi j, j = 0 (17a) 

σi j = c i jkl ε 
ζ
kl 

(17b) 

ε ζ
kl 

= u 
ζ
( k,l ) 

= 

1 

2 

(
u 

ζ
k,l 

+ u 
ζ
l,k 

)
(17c) 

Having utilized the weighted residual method, the following 

weak form is obtained from the divergence theorem, ∫ 
��

w i σi j, j d� = 0 ∀ w i ∈ H 

1 ( ��) 

⇒ 

∫ 
��

w i, j σi j d� −
∫ 

∂�

w i σi j n j d� = 0 ∀ w i ∈ H 

1 ( ��) 

(18) 

where the vector space H 

1 (.) encompasses functions whose first 

derivative is square-integrable. Considering the subspace W 

1 ⊂
H 

1 ( ��) similar to V 

1 , the space of all possible functions of u 1 
i ( y ) 

in relation (15c) , Eq. (18) is also hold as ∫ 
��

w 

1 
i, j σi j d� −

∫ 
∂�

w 

1 
i σi j n j d� = 0 ∀ w i ∈ W 

1 (19) 

Knowing that δu 1 
( i, j ) 

= w 

1 
( i, j ) 

from Eq. (15c) and (19) , and compar- 

ing (15c) and (19) leads to the following constraint on u 1 
i ( y ) ∫ 

∂�

δu 1 i σi j n j d� = 0 (20) 

In simple problems, this constraint can be satisfied automatically 

using a number of appropriate boundary conditions such as peri- 

odic or minimal kinematic boundary conditions ( Miehe and Koch, 

2002 ). 

4.3. Algorithm of EMSHM 

The general steps of EMSHM algorithm are defined as: 

• Step 1. Defining the microscopic strain field in RVE with super- 

position of the macro strain and complementary strain field, Eq. 

(11) . 

• Step 2. Expressing the macroscopic virtual power density based 

on the macroscopic strain and micro-based additional kine- 

matic variable(s), Eq. (12) . 

• Step 3. Describing the macroscopic stress work conjugates of all 

kinematic variables, based on Eq. (15a) and (15b) . 

• Step 4. Solving the microscopic governing equation, Eq. (15c) , 

with the appropriate boundary conditions, constraint (20) . 

• Step 5. Describing the macroscopic governing equation using 

the macroscopic virtual power density (12) . 

This procedure is adopted to formulate H-EMSHM and T- 

EMSHM in the next sections. 

5. Heaviside enriched multiscale homogenization method 

(H-EMSHM) 

One of the important remaining issues in the first order multi- 

scale homogenization is to incorporate a softening behavior within 

RVE into the macroscopic response. In this section, EMSHM is fur- 

ther developed to allow for softening due to cohesive/adhesive 

cracks in RVE into a macro continuum model by introducing the 

additional kinematic variable. The macroscopic stress work conju- 

gate of this additional kinematic variable is also computed. 

5.1. Extraction of the enhanced kinematic variable in H-EMSHM 

To extract ε ∗
i j 

in (10) , the strain field ˜ ε i j ( y ) in RVE should be 

defined. Considering the XFEM approximation in RVE, the displace- 

ment field ˜ u i ( y ) can be expressed as ( Goli et al., 2014; Hosseini 

et al., 2013 ) 

˜ u i ( y ) = 

n stn ∑ 

k =1 

N k ̂  u k i + 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] ̂  a 
k 
i (21) 

with 

H ( ξ ) = 

{
1 ξ > 0 

0 ξ < 0 
(22) 

and 

ξ ( y ) = sign 
((
y − y �C 

)
. � n �C 

)
(23) 

where �C is the crack path, y �C 
is the projection of y on �C and 

�
 n �C 

is the unit normal vector on �C , as depicted in Fig. 2 . Further- 

more, ˆ u k 
i 
and ˆ a k 

i 
in (21) are the standard and enriched nodal de- 

grees of freedom, respectively (superscript k and subscript i in ˆ u k 
i 

and ˆ a k 
i 
refer to the node number and displacement component, re- 

spectively), n stn is the number of nodes, n en is the number of en- 

riched nodes, and y k is the position of node k . 

It is proved that (21) can be rewritten as (see Appendix C ) 

˜ u i ( y ) = ( H ( y ) − ϕ ( y ) ) βi + u 1 i ( y ) (24) 

where ϕ(y ) is a smooth function, defined by (C.4) in Appendix C . 

One dimensional representation of H (.) and ϕ(.) are schematically 

depicted in Fig. 3 . 

β i in (24) is a constant displacement jump, defined as, 

βi = 

1 

| �C | 
∫ 
�C 

[ [ ̃  u i ] ] d� (25) 

where [ [ ̃  u i ( y ) ] ] is the displacement jump of ˜ u i at point y located on 

�C 

[ [ ̃  u i ( y ) ] ] = lim 

�y → 0 
( ̃  u i ( y + �y ) − ˜ u i ( y − �y ) ) ;

y ∈ �C and �y is parallel to � n �C 
(26) 

Assumption (25) allows for obtaining the constraint (27) on u 1 
i 
in 

(24) ∫ 
�C 

[[
u 1 i 
]]
d� = 0 (27) 

which can be conveniently proved with substitution of (24) into 

(25) 
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Fig. 2. Definition of the Heaviside function, and XFEM discretization in RVE. 

βi = 

1 

| �C | 
∫ 
�C 

[ [ ̃  u i ] ] d�

= 

1 

| �C | 
∫ 
�C 

[[
( H ( y ) − ϕ ( y ) ) βi + u 1 i ( y ) 

]]
d�

= 

1 

| �C | 
∫ 
�C 

[ [ ( H ( y ) − ϕ ( y ) ) βi ] ] d�︸ ︷︷ ︸ 
= βi 

+ 

1 

| �C | 
∫ 
�C 

[[
u 1 i ( y ) 

]]
d�

⇒ 

∫ 
�C 

[[
u 1 i ( y ) 

]]
d� = 0 

(28) 

Definition of β i in (25) leads to the simple condition (27) that al- 

lows to set the micro displacement jump weakly equal to zero (i.e. 

the displacement jump is not zero for every point on the crack 

face, but its average is zero along the crack surface). The comple- 

mentary strain ˜ ε i j is derived from (24) , 

˜ ε i j = δ�C 

(
n j βi 

)sym −
(
ϕ , j βi 

)sym + u 1 ( i, j ) (29) 

where ( �) sym is the symmetric part of ( �), and δ�C 
is the Dirac 

delta function with respect to �C , that is equal to one on �C and 

vanishes along the normal to the crack line. This definition leads 

to the following property for arbitrary function g(x ) ( Bosco et al., 

2014 ), ∫ 
�

δ�C 
g ( x ) d� = 

∫ 
�C 

g ( x ) d� (30) 

Combining (29) with (10) and (1) , the strain field in RVE is ob- 

tained 

ε ζ
i j 

= ε̄ i j + δ�C 

(
n j βi 

)sym −
(
ϕ , j βi 

)sym + u 1 ( i, j ) (31) 

and comparing (29) with (10) , the enhanced strain is expressed 

with 

ε ∗i j = δ�C 

(
n j βi 

)sym −
(
ϕ , j βi 

)sym 

(32) 

Remark 2. It should be emphasized that Eq. (27) does not mean u 1 
i 

is a continuous function. It is shown in Appendix C that u 1 
i 
is also 

a discontinuous function within the XFEM discretization. 

Remark 3. The enhanced strain in (32) is obtained from the de- 

composition of (21) in the form of (24) . Other forms of decom- 

positions or higher order terms can be considered to enhance the 

accuracy of this method. 

Remark 4. It is important to note that β i in (31) is not a macro- 

scopic crack opening. It is in fact an average of microscopic crack 

openings, and is applied on crack faces in RVE. This is one of the 

substantial contrasts between the macro-based and micro-based 

viewpoints. It will be shown that even if there is not a macro-crack 

in the EMSHM problem, β i may emerge in all macroscopic (Gauss) 

points whose corresponding RVEs are cracked. 

Remark 5. Eq. (29) is apparently analogous to the embedded- 

discontinuity formulation ( Oliver et al., 2006 ). However, they dif- 

fer in concept because u 1 
(i, j) 

is also discontinuous in this equation. 

Consequently Eq. (29) represents the strain field of XFEM, as ex- 

plained in Appendix C . 

5.2. Enhanced stress 

The work conjugate of the enhanced strain, called hereafter as 

the enhanced stress, γ i , is expressed by 

γi = 

1 

| ��| 
∫ 
��

−ϕ , j σi j d� + 

1 

| ��| 
∫ 
�C 

σi j n j d� (33) 
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Fig. 3. One dimensional representation of H (.) and ϕ(.) in relation (24) based on 

the finite element discretization. 

and the enhanced part of macroscopic power virtual density in 

(12) can be written as, 

δp ∗ = γi δβi (34) 

The term σ ij n j in the second integral of (33) is equivalent to the 

cohesive traction on �C . Eqs. (33) and (34) can be proved with 

substituting (32) into (15b) 

δp ∗int 
(
δε ∗ij 
)

= δp ∗
(
ε ∗ij 
)

= 

1 

| ��| 
∫ 

��

δε ∗ij σij d�

= 

1 

| ��| 
∫ 

��

δ
(
δ�C 

(
n j βi 

)sym −
(
ϕ , j βi 

)sym 

)
σij d�

= 

1 

| ��| 
∫ 

��

δ�C 
σij n j δβi d� + 

1 

| ��| 
∫ 

��

−ϕ , j σij δβi d�

= 

δβi 

| ��| 
∫ 

�C 

σij n j d� + 

δβi 

| ��| 
∫ 

��

−ϕ , j σij d�

= 

(
1 

| ��| 
∫ 

�C 

σij n j d� + 

1 

| ��| 
∫ 

��

−ϕ , j σij d�

)
︸ ︷︷ ︸ 

γi 

δβi 

= γi δβi (35) 

5.3. Microscopic governing equations and boundary conditions 

From Eqs. (19) and (20) , the equilibrium equation on RVE is ex- 

pressed by ∫ 
��

w 

1 
i, j σi j d� = 0 ∀ w i ∈ W 

1 (36) 

and the constraints are applied using Eqs. (20) and (28) ∫ 
∂�

u 1 i σi j n j d� = 0 (37a) 

∫ 
�C 

[[
u 1 i 
]]
d� = 0 (37b) 

where �C and ∂� in (37) are clearly distinguished in Fig. 4 a. Due 

to the existence of discontinuity in RVE, Eq. (36) is efficiently 

solved with the XFEM approximation (C.6b) . 

5.4. Macroscopic governing equation 

The macroscopic governing equations of the equivalent homo- 

geneous domain is derived in this section. 

5.4.1. Virtual internal power 

Substituting (34) and (15a) into (12) , the macroscopic virtual 

power density is expressed by 

δp M 

(
ε̄ i j , βi 

)
= σ̄i j δε̄ i j + γi δβi (38) 

Integrating the macroscopic virtual power density of the macro- 

homogeneous material, (12) , over � (depicted in Fig. 4 b), the vir- 

tual internal power, δP int , is obtained from 

δP int = 

∫ 
�

δp M 

(
ε̄ i j , ˜ ε i j 

)
d� (39) 

and substituting (38) into (39) , the virtual internal power of H- 

EMSHM is written as, 

δP int = 

∫ 
�

(
σ̄i j δε̄ i j + γi δβi 

)
d� (40) 

5.4.2. Virtual external power 

The virtual external power includes surface and body terms act- 

ing on � and �t respectively, as depicted in Fig. 4 b. A generalized 

body force B i , which is resulted from the traction on crack surfaces 

in the RVE is also introduced. The final form of the virtual external 

power is expressed by 

δP ext = 

∫ 
�

( b i δū i + B i δβi ) d� + 

∫ 
�t 

t i δū i d� (41) 

where t i is the traction on the surface and ū (i, j) = ε̄ i j . 

Remark 6. The body force B i represents the effect of micro (RVE) 

crack face tractions on the body force of macro level. For a crack 

face traction vector q i in the RVE level, the term B i δβ i can be de- 

fined as the virtual work of traction on crack surface divided by 

the RVE volume, which represents the virtual work per unit vol- 

ume due to body force of a point in the macro level. 

B i δβi = 

1 

| ��| 
∫ 
�C 

q i δβi d� (42) 

The generalized traction force (analogous to the generalized body 

force B i ) does not appear in (41) due to the fact that the traction 

on crack faces in RVE does not contribute to RVE boundaries. 
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Fig. 4. Schematic depiction of cracked RVE and macroscopic boundary conditions. 

5.4.3. Principle of virtual work and governing equations 

According to the principle of virtual work, the virtual internal 

and external works are in equilibrium for any independent virtual 

δū i and δβ i 

δP int − δP ext = 0 (43) 

Substituting (40) and (41) into (43) , the weak form of macroscopic 

governing equations is obtained ∫ 
�

(
σ̄i j δε̄ i j + γi δβi 

)
d� −

∫ 
�

( b i δū i + B i δβi ) d� −
∫ 
�t 

t i δū d� = 0 

(44a) 

ū i ( x ) = ū d i x ∈ �D (44b) 

where (44a) is true for any variation of δū i and δβ i , and ū 
d 
i 

in 

(44b) is the prescribed displacement on �D , as depicted in Fig. 4 b. 

Solution algorithm to solve coupled macro and micro governing 

equations is explained in Appendix E . 

Remark 7. One of the advantages of this method is the fact that 

the properties of continuous and discontinuous parts in the macro- 

scopic domain are calculated at the same Gauss points, so no ad- 

ditional Gauss points on the macroscopic crack are necessary. 

5.5. Numerical examples of H-EMSHM 

In this section, 1D and 2D numerical examples are studied 

based on the proposed formulation in Section 5 . First, a 1D hetero- 

geneous bar, with a weak bond between materials in RVE is con- 

sidered. Afterward, a 2D multiscale problem with cracked RVEs is 

examined. 

5.5.1. 1D heterogeneous bar 

A 1D heterogeneous bar, as depicted in Fig. 5 , is investigated. 

The bar is fixed at one end and is subjected to prescribed displace- 

ment at the other end. The RVE includes two material types with 

E 1 and E 2 modules of elasticity and the volume fractions α < 1 and 

(1 − α) , respectively. 

A traction-separation constitutive law, as depicted in Fig. 6 , is 

considered for the spring weak bond between materials of the 

model. In the first part of Fig. 6 , the force in spring increases lin- 

early with the stiffness k until d = d 0 . Afterwards, the force in 

spring reduces according to 

f ( d ) = f 0 

∣∣∣∣
(

d − d 0 
d 1 − d 0 

− 1 

)n ∣∣∣∣ (45) 

where parameters d 0 , d 1 and f 0 are described in Fig 6 . 

First, this example is investigated with the following data: 

L = 5 (cm ) A = 1 (cm 

2 ) l = �� = 1 (cm ) 

α = 0 . 5 E 1 = 200 (GP a ) E 2 = 5 (GP a ) 

k = 450 

(
KN 

cm 

)
d 0 = 0 . 01 (cm ) d 1 = 0 . 128 (cm ) 

P 0 = 4 . 5 (KN) n = 2 −
where A is the cross section area of the bar. A direct numeri- 

cal analysis (DNA) with 21 elements is used to verify the model. 

Fig. 7 compares the results of H-EMSHM and DNA analysis, which 

shows identical responses not only in the hardening part, but also 

in the post-peak softening segment. 

To investigate the effect of volume fraction of materials in the 

RVE, the f − � curves for different values of fraction parameter α
are presented in Fig. 8 . It is observed that higher volume fractions 

lead to higher stiffness in the f − � curve. Furthermore, due to 

the nature of 1D problem, the maximum force in all conditions is 

limited to the maximum load of spring, P 0 = 4 . 5 KN. 

5.5.2. 2D heterogeneous plate with cracked RVE 

In this section, a heterogeneous plate under tension and shear 

deformation is investigated with H-EMSHM. The constituent mate- 

rial is a matrix reinforced with stiff inclusions, as depicted in Fig. 9 . 

Material properties for the matrix and inclusion are denoted by m 

and I , respectively. 

To verify the model, the material properties are assumed as: 

E m 

= 68 . 9 GPa, E I = 379 . 2 GPa and νm 

= νI = 0 . 33 . The volume frac- 

tion α = 

| �I | | ��| = 0 . 0616 , where | �I | is the volume of inclusion, is 

used in this model. Dimensions of the plate are W 

H = 

3 
7 , and its 
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Fig. 5. 1D heterogeneous bar with weak material bonding inside the RVE. 

Fig. 6. Traction-separation law for the spring. 

Table 1 

Responses of Type-A and Type-B loadings on the 2D rein- 

forced plate. 

Type �h �v error (%) 

A 0 0.05 0.27 

B 0.05 0 1.56 

bottom edge is restrained against moving in horizontal and verti- 

cal directions. 442 and 21 quadrilateral elements are used to model 

RVE and macro-problem, respectively, as depicted in Fig. 10 . 

Numerical deformation of RVE under unit values of macroscopic 

kinematic variables ε̄ 11 , ε̄ 22 , ε̄ 12 , β1 and β2 are depicted in Fig. 11 . 

To verify the model, a direct numerical model containing 9450 

nodes is used as the benchmark with the mesh configuration of 

Fig. 12 . Two loading types of A and B are assumed, represent- 

ing tension and shear deformations of the plate, as depicted in 

Figs. 13 a and 13 b, respectively. 

Table 2 

Comparison of the normalized average stress for different 

ratio of E I 
E m 

in the 2D plate under prescribed displacement. 

( ̄σ22 = 

∫ 
�top σ22 ( x ) d�

W 
and E ∗ = 

√ 

E I E m ). 

E I 
E m 

σ̄22 

E ∗ (present method) σ̄22 

E ∗ (DNA) error (%) 

1 0.609 0.608 0.38 

2 0.524 0.522 0.35 

3 0.438 0.437 0.33 

4 0.385 0.384 0.30 

5 0.347 0.346 0.28 

6 0.319 0.318 0.26 

7 0.296 0.296 0.25 

8 0.278 0.278 0.23 

9 0.263 0.262 0.23 

10 0.250 0.249 0.22 

Table 3 

Comparison of the normalized average stress for different number 

of macro elements. E m = 68 . 9 GPa, E I = 379 . 2 GPa, ( ̄σ22 = 

∫ 
�top σ22 ( x ) d�

W 

and E ∗ = 

√ 

E I E m ). 

Case Number of elements σ̄22 

E ∗ error with respect 

to case 4 (%) 

1 3 × 7 = 21 0.3320 0.40 

2 6 × 14 = 84 0.3312 0.15 

3 12 × 28 = 336 0.3308 0.04 

4 24 × 56 = 1344 0.3307 - 

The results of simulations are compared in Table 1 . The error, 

computed with respect to the direct simulation, shows a good 

agreement between the present method and the reference solu- 

tion. Moreover, different ratios of E m 
E I 

are examined in Table 2 for 

the loading Type-A to investigate its effect on the model response. 

Values in Table 2 are average of stress σ̄22 = 

∫ 
�top σ22 ( x ) d�

W 

on the 

top edge, normalized by E ∗ = 

√ 

E I E m 

. Furthermore, the normalized 

average stress is depicted in Fig. 14 for different volume fractions α. 

Additionally, to investigate the effect of number of elements, 

the results for four different number of elements (21, 84, 336 and 

1344) are compared in Table 3 for the Type A loading. It is ob- 

served that while the results converge to the one associated with 

the finest mesh, the errors remain in an acceptable range. 
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Fig. 7. Comparison of f − � response of 1D-bar subjected to prescribed displacement at its end for H-EMSHM and DNA. 

Fig. 8. f − � response of 1D-bar using H-EMSHM subjected to prescribed displacement for different volume fractions α. 

6. Crack tip enriched multiscale homogenization method 

(T-EMSHM) 

One of the mostly addressed shortcomings of the first order 

multiscale homogenization method is its assumption of constant 

macro strain on RVE, which limits its application to high macro 

strain gradient problems. Higher order theories alleviate this prob- 

lem with incorporating a higher order stress field in the formu- 

lation. Furthermore, Fish and coworkers developed a novel frame- 

work based on the partition of unity concept to enrich a local re- 

gion using first ( Fish and Yuan, 2005 ) and second ( Fish and Yuan, 

2007 ) terms of the multiscale asymptotic expansion in the mathe- 

matical homogenization theory. 

The singular strain field in the vicinity of a crack tip is an im- 

portant case in which not only the first order homogenization as- 

sumption is violated, but also the gradient terms are insufficient 

to predict an accurate response. A number of techniques such as 

the partitioned domain based multiscale methods ( Vernerey and 

Kabiri, 2014 ), were developed in atomistic and continuum levels to 

address this problem. 

In this paper, based on a priori known 1 / 
√ 

r singular strain field 

near a crack tip (where r is the distance from the crack tip), and 

inspired by the extended numerical methods ( Bayesteh and Mo- 

hammadi, 2013; Bayesteh et al., 2015 ), crack tip enrichment basis 

functions are employed to describe the displacement approxima- 

tion in RVE to capture the effect of singular strain in the macro 

formulation based on the proposed EMSHM. This type of enhance- 

ment is now called T-EMSHM, considering the use of XFEM tip en- 

richment in the formulation. 

6.1. Extraction of the enhanced kinematic variable in T-EMSHM 

As mentioned in Section 4 , it is necessary to properly define ε∗

in EMSHM. Based on the order of singularity of the strain filed 

around a crack tip, the crack tip enrichment function 
√ 

r sin (θ/ 2) is 

employed here to describe the complementary displacement field 
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Fig. 9. 2D heterogeneous plate with cracked RVE. 

with, 

˜ u i ( y ) = u h i ( y ) + F ik αk ( y ) (46) 

where u h 
i ( y ) is the standard finite element displacement field. 

αk ( y ) is the unknown displacement field whose basis functions 

satisfy the partition of unity rule ( Mohammadi, 2012 ), and F ik is 

the enrichment function, defined by, 

F ik = f enr ( x ) δik (47) 

where 

f enr ( x ) = 

√ 

r sin 

(
θ

2 

)
(48) 

r and θ in (48) are the local polar crack tip coordinate axes, as 

described in Fig. 15 , and δik is the Kronecker delta. For additional 
advantages of the term 

√ 

r sin (θ/ 2) refer to Bayesteh et al. (2015) . 

Furthermore, the enriched term F ik αk ( y ) is used over the whole 

domain of RVE, ��, due to its small dimensions. 

The complementary strain field is then derived as 

˜ ε i j ( y ) = 

˜ u ( i, j ) ( y ) = u h ( i, j ) ( y ) + F ik α( k, j ) ( y ) + F ( ik, j ) αk ( y ) (49) 

where 

u h ( i, j ) = 

u h 
i, j 

+ u h 
j,i 

2 
(50a) 

α( k, j ) = 

αk, j + α j,k 

2 
(50b) 

F ( ik, j ) = 

F ik, j + F jk,i 

2 
(50c) 

Details of derivation of (49) are presented in Appendix D . While 

the singular trend in (46) is captured by the enrichment function 

F ik , αk acts as a non-singular function over the RVE. Assuming a 

linear variation for αk 

αk ( y ) ≈ ᾱk + ᾱ∇ 

k,l y l (51) 

where ᾱk and ᾱ
∇ 

k,l 
are the magnitude of αk and its gradient at the 

center of RVE. Accordingly, the symmetric gradient of αk is ob- 

tained from (51) 

α( k, j ) = 

αk, j + α j,k 

2 

≈
ᾱ∇ 

k,l 
y l, j + ᾱ∇ 

j,l 
y l,k 

2 
= 

ᾱ∇ 

k,l 
δl j + ᾱ∇ 

j,l 
δlk 

2 
= 

ᾱ∇ 

k, j 
+ ᾱ∇ 

j,k 

2 
= ᾱ∇ 

( k, j ) 

⇒ α( k, j ) ≈ ᾱ∇ 

( k, j ) 

(52) 

Fig. 10. Mesh configurations of RVE and macro-domain. 
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Fig. 11. Deformed configuration of RVE under unit macroscopic kinematic variables: a) ε̄ 11 = 1 b) ε̄ 22 = 1 c) ε̄ 12 = 1 d) β1 = 1 e) β2 = 1 . 

Fig. 12. Mesh configuration of the direct numerical analysis (DNA). 

Substituting (51) and (52) into (49) , the complementary strain field 

can be expressed as 

˜ ε i j ( y ) = u h ( i, j ) ( y ) + F ik ( y ) ̄α
∇ 

k, j + F ( ik, j ) 

(
ᾱk + ᾱ∇ 

k,l y l 
)

(53) 

where the symmetric property of F ik is used to replace F ik ( y ) ̄α
∇ 

( k, j ) 

with F ik ( y ) ̄α
∇ 

k, j 
. Comparing (53) with (10) , the enhanced strain and 

the strain fields due to the micro fluctuations are derived as 

˜ ε i j ( y ) = u 1 ( i, j ) ( y ) + ε ∗i j ( y ) (54a) 

ε ∗i j ( y ) = F ik ( y ) ̄α
∇ 

k, j + F ( ik, j ) 

(
ᾱk + ᾱ∇ 

k,l y l 
)

(54b) 

u 1 ( i, j ) ( y ) = u h ( i, j ) ( y ) (54c) 

where ᾱk and ᾱ
∇ 

k, j 
, now called the enhanced tip enriched strain, 

should be distinguished from the enhanced strain in H-EMSHM. 

Remark 8. The complementary displacement field in Eq. (46) can 

be considered as a useful approximation with an appropriate en- 

richment function (48) . Generally, it is possible to use other ten- 

sors with different ranks instead of F ik in (46) to approximate other 

specific displacement/strain fields. 

6.2. Enhanced stress and macroscopic virtual power density in 

T-EMSHM 

After extraction of the enhanced tip enriched strain, the en- 

hanced macroscopic virtual power density, δp 
 , is obtained as 

δp ∗ = τk δᾱk + τ∇ 

k j δᾱ
∇ 

k, j (55) 

where τ k and τ
∇ 

k j 
are the work conjugates of the enhanced tip en- 

riched strain ᾱk and ᾱ
∇ 

k, j 
, respectively 

τk = 

1 

| ��| 
∫ 
��

σi j F ( ik, j ) d� (56a) 
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Fig. 13. Horizontal and vertical prescribed displacements on the reinforced plate. 

Fig. 14. Effect of volume fraction α = 

| �I | | �� | on the average resultant force in the 2D plate under prescribed displacement. ( ̄σ22 = 

∫ 
�top σ22 ( x ) d�

W 
and E ∗ = 

√ 

E I E m ). 

τ∇ 

k j = 

1 

| ��| 
∫ 
��

(
σi j F ik + σim 

F ( ik,m ) y j 
)
d� (56b) 

Equations (55) and (56) are obtained by substituting (54b) into 

(15b) as 

δp ∗ = 

1 

| ��| 
∫ 
��

δε ∗i j σi j d�

= 

1 

| ��| 
∫ 
��

σi j δ
(
F ik ( y ) ̄α

∇ 

k, j + F ( ik, j ) 

(
ᾱk + ᾱ∇ 

k,l y l 
))
d�

= 

1 

| ��| 
∫ 
��

σi j F ( ik, j ) δᾱk d�

+ 

1 

| ��| 
∫ 
��

σi j 

(
F ik δᾱ

∇ 

k, j + F ( ik, j ) δᾱ
∇ 

k,l y l 
)︸ ︷︷ ︸ 

( σi j F ik + σim F ( ik,m ) y j ) δᾱ∇ 
k, j 

d�

×
(

1 

| ��| 
∫ 
��

σi j F ( ik, j ) d�

)
︸ ︷︷ ︸ 

τk 

δᾱk 

+ 

(
1 

| ��| 
∫ 
��

(
σi j F ik + σim 

F ( ik,m ) y j 
)
d�

)
︸ ︷︷ ︸ 

τ∇ 
k j 

δᾱ∇ 

k, j 

⇒ δp ∗ = τk δᾱk + τ∇ 

k j δᾱ
∇ 

k, j (57) 

where the term σi j F ( ik, j ) δᾱ
∇ 

k,l 
y l in the second line of (57) has been 

replaced with σim 

F ( ik,m ) y j δᾱ
∇ 

k, j 
according to 

σi j F ( ik, j ) δᾱ
∇ 

k,l y l = σim 

F ( ik,m ) δᾱ
∇ 

k,s y s = σim 

F ( ik,m ) δᾱ
∇ 

k, j y j 

⇒ σi j F ( ik, j ) δᾱ
∇ 

k,l y l = σim 

F ( ik,m ) δᾱ
∇ 

k, j y j 
(58) 
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Fig. 15. Local polar coordinate system for the crack tip enrichment. 

6.3. Microscopic governing equation and boundary conditions for 

T-EMSHM 

Analogous to H-EMSHM formulation in Section 5.3 , the micro- 

scopic governing equation is obtained using Eqs. (19) and (20) as ∫ 
��

w 

1 
i, j σi j d� = 0 ∀ w i ∈ W 

1 (59) 

with the constraint based on Eq. (60) ∫ 
∂�

u 1 i σi j n j d� = 0 (60) 

6.4. Macroscopic governing equation for T-EMSHM 

Employing the same approach as H-EMSHM in Section 5.4 , the 

macroscopic governing equations are expressed with the aid of the 

virtual power principle. 

6.4.1. Virtual internal power 

Substituting (55) and (15a) into (12) , the macroscopic virtual 

power density is expressed by, 

δp M 

(
ε̄ i j , ε 

∗
i j 

)
= δ p̄ 

(
ε̄ i j 
)

+ δp ∗
(
ε ∗i j 
)
= ̄σi j δε̄ i j + τk δᾱk + τ∇ 

k j δᾱ
∇ 

k, j 

(61) 

Integrating the macroscopic virtual power density of the macro- 

homogeneous material, equation (61) , over �, the virtual internal 

power of T-EMSHM is 

δP int = 

∫ 
�

δp M d� = 

∫ 
�

(
σ̄i j δε̄ i j + τk δᾱk + τ∇ 

k j δᾱ
∇ 

k, j 

)
d� (62) 

6.4.2. Virtual external power for T-EMSHM 

The virtual external power of surface force acting on �t can be 

expressed with 

δP ext = 

∫ 
�t 

t i δū i d� (63) 

where t i is the traction on the surface and ū (i, j) = ε̄ i j . 

6.4.3. Principle of virtual work and macroscopic governing equation 

in T-EMSHM 

According to the principle of virtual work, the virtual internal 

and external works are equal for any independent virtual δū i and 
δᾱi . Substituting (62) and (63) into (43) , the weak form of the 

macroscopic governing equation can be written as ∫ 
�

(
σ̄i j δε̄ i j + τk δᾱk + τ∇ 

k j δᾱ
∇ 

k, j 

)
d� −

∫ 
�t 

t i δū i d� = 0 (64a) 

ū i ( x ) = ū d i x ∈ �D (64b) 

where (64a) is true for any variation of δū i and δᾱk , and ū 
d 
i 

in 

(64b) is the prescribed displacement on �D . 

Remark 9. It is possible to combine both Heaviside H-EMSHM and 

tip T-EMSHM enrichments in the micro-based framework, if inves- 

tigation of crack singularity within the RVE is in hand. 

Remark 10. It should be noted that the enrichment function √ 

r sin 
(

θ
2 

)
(introduced in Eq. (48) ) is also discontinuous on crack 

surface due to the characteristic of sin 
(

θ
2 

)
( Bayesteh et al., 2015 ). 

Consequently, the tip enrichment function (48) is discontinuous 

across crack faces and does not require an independent Heavi- 

side enrichment within an element. As a result, the tip enrichment 

can be used for cases where crack tip is located anywhere inside 

the RVE. For any complicated crack path in the RVE, however, H- 

EMSHM and T-EMSHM should be simultaneously adopted. 

6.5. Numerical example of T-EMSHM 

The aim of T-EMSHM is to consider severe strain gradient prob- 

lems, in which the first order homogenization methods fail to per- 

form, by taking a priori known appropriate basis functions into 

the formulation. To evaluate the formulation, a cracked plate un- 

der uniform prescribed tension is considered, as depicted in Fig. 16 . 

Geometric specifications and mechanical properties are: 

H = 12 (mm ) W = 10 (mm ) a = 4 (mm ) 

σ̄ = 50 (MP a ) E m 

= 68 . 9 (GP a ) E I = 379 . 2 (GP a ) 

νm 

= 0 . 33 νI = 0 . 22 
�I 

��
= 0 . 267 

As a reference benchmark, a very fine finite element mesh 

( Fig. 17 ) including 140160 four node (”Q4”) elements (140629 

nodes) is employed to model all details. Furthermore, a macro ho- 

mogeneous model with 30 Q4 elements (42 nodes) in parallel with 

the RVE model, with 1168 Q4 elements (1205 nodes), are used 

to evaluate T-EMSHM. Additionally, the first order homogenization 

method, with the same macro/RVE mesh as T-EMSHM, is consid- 

ered for comparison. The homogeneous macro and RVE mesh con- 

figurations are shown in Fig. 18 . The crack is explicitly meshed in 

the macroscopic scale, however, a general crack-independent XFEM 

mesh can also be adopted. The proposed T-EMSHM is employed 

to consider singular distribution of strain field in a local region 

around an existing macroscopic crack. Consequently, only the el- 

ements around the crack tip are enriched in this example. It is 

generally possible to enrich farther elements, but it is not recom- 

mended due to the characteristic of singular function 1 √ 

r 
, that van- 

ishes rapidly. 

Due to the fact that the enrichment function (48) varies with 

respect to the crack tip location, the corresponding basic modes do 

not remain unique for all RVEs and depend on the location of RVE. 

In Fig. 19 , two basic modes associated with the additional macro- 

scopic kinematic variable in T-EMSHM are shown for the RVE lo- 

cated at nearest gauss point to the macroscopic crack tip. 

The von Mises stress contours on an RVE near the crack tip, as 

depicted in Fig. 16 , are compared in Fig. 20 for the reference (direct 

modeling), T-EMSHM and first order homogenization solutions. It 

is clearly observed that T-EMSHM is more accurate than the first 

order homogenization from both the magnitude and spatial dis- 

tribution points of view. The first order homogenization method 

shows almost a uniform stress distribution in Fig. 20 c because of 

its underlying constant macro stress assumption, while the en- 

richment introduced in (48) is capable of reproducing the singu- 

lar and non-constant macro stress field in T-EMSHM, as depicted 
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Fig. 16. Rectangular cracked plate under tension. 

Fig. 17. Mesh configuration of the direct numerical modeling of cracked rectangular plate. 
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Fig. 18. Mesh configurations of homogeneous macro-domain and RVE. 

Fig. 19. Deformed configuration (microflactuation) of RVE under unit macroscopic T-EMSHM kinematic variable. 

Table 4 

Comparison of maximum von Mises stress and the corresponding error for T- 

EMSHM and the first order homogenization. ( er ror % = 

σ re f 
VM 

−σVM 

σ re f 
VM 

× 100 ). 

Method Maximum von Mises stress (MPa) error (%) 

reference (DNA) 509.5 −
T-EMSHM 467.7 8 

first order homogenization 123.5 75 

in Fig. 20 b. The maximum values of von Mises stress for direct, T- 

EMSHM and first order methods are 509.5, 467.7 and 123.5 MPa , 

respectively. The error of T-EMSHM and first order homogenization 

methods are reported in Table 4 , which shows a major improve- 

ment by T-EMSHM. 

7. Conclusion 

The main focus of this paper has been to discuss development 

of the general framework of new kinematic variables to overcome 

the shortcomings of conventional homogenization problems. Ac- 

cording to the concepts of homogenization, additional kinematic 

variables can either be macro-based or micro-based. The micro- 

based approach has been proposed and particularly explored in 

this study as a versatile tool to derive appropriate additional vari- 

ables based on the existing phenomena in RVE. Another words, the 

new variables are derived from the microscopic concepts rather 

than the macroscopic one. This new approach is suitable for han- 

dling the drawbacks of conventional homogenization methods. 
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Fig. 20. Von Mises stress contour: a) reference direct solution b) T-EMSHM c) first order homogenization. 

Accordingly, a general formulation based on the micro- 

based framework, entitled the enriched multiscale homogenization 

method (EMSHM), has been developed using the Hill-Mandel the- 

ory to extract the work conjugate of new variables. EMSHM has 

then been employed to formulate governing macroscopic equation 

to study a cracked RVE and a problem with severe strain gradi- 

ent near a macro crack tip. First, the Heaviside enriched multiscale 

homogenization method (H-EMSHM) has been developed based on 

the XFEM formulation in the RVE to incorporate the effects of mi- 

croscopic cracking on macroscopic formulation. H-EMSHM has suc- 

cessfully been evaluated with basic examples. 

Furthermore, the crack tip enriched multiscale homogenization 

method (T-EMSHM) has been established based on the inspiration 

from the crack tip enrichment of the extended numerical method 

with the intention of considering severe macro strain gradient on 

the RVE. The existing tip enrichment has been used to extract new 

kinematic variables according to the EMSHM. Numerical simulation 

of a cracked plate showed the superior performance of T-EMSHM 

from both the spatial distribution and magnitude of stress around 

the crack tip. It should be emphasized that, apart from the present 

application in a near crack tip domain, this formulation can be well 

utilized in different extreme problems with proper adoption of ap- 

propriate enrichment functions. Mixed mode fracture, crack propa- 

gation and considering general softening cases are among the on- 

going research works. 

Acknowledgements 

The authors wish to gratefully acknowledge the technical sup- 

port of the High Performance Computing Lab, School of Civil Engi- 

neering, University of Tehran. 

The financial support of Iran National Science Foundation (INSF) 

is gratefully acknowledged. 

Appendix A. First order multiscale homogenization 

Substituting Eqs. (1) into (2) results in 

δ p̄ 
(
ε̄ i j ( x ) 

)
= 

1 

| ��| 
∫ 

��

σi j ( x , y ) δ
(
ε̄ i j ( x ) + ˜ ε i j ( y ) 

)
d�

= 

1 

| ��| 
∫ 

��

σi j ( x , y ) δε̄ i j ( x ) d�

+ 

1 

| ��| 
∫ 

��

σi j ( x , y ) δ ˜ ε i j ( y ) d�

= 

(
1 

| ��| 
∫ 

��

σi j ( x , y ) d�

)
︸ ︷︷ ︸ 

σ̄i j ( x ) 

δε̄ i j ( x ) 

+ 

1 

| ��| 
∫ 

��

σi j ( x , y ) δ ˜ ε i j ( y ) d� (A.1) 

⇒ δ p̄ 
(
ε̄ i j ( x ) 

)
= σ̄i j ( x ) δε̄ i j ( x ) + 

1 

| ��| 
∫ 

��

σi j ( x , y ) δ ˜ ε i j ( y ) d�

⇒ 

[
δ p̄ 
(
ε̄ i j ( x ) 

)
−σ̄i j ( x ) δε̄ i j ( x ) 

]
− 1 

| ��| 
∫ 

��

σi j ( x , y ) δ ˜ ε i j ( y ) d�=0 

(A.2) 

Knowing that δ p̄ 
(
ε̄ i j ( x ) 

)
depends on ε̄ i j , and δε̄ i j and δ ˜ ε i j are ar- 

bitrary, the virtual macroscopic power density 

δ p̄ 
(
ε̄ i j ( x ) 

)
− σ̄i j ( x ) δε̄ i j ( x ) = 0 

⇒ δ p̄ ( x ) = σ̄i j ( x ) δε̄ i j ( x ) 
(A.3) 

is derived by setting δ ˜ ε i j ( y ) = 0 and δε̄ i j ( x ) is arbitrary, where 

σ̄i j ( x ) = 

1 

| ��| 
∫ 

��

σi j ( x , y ) d� (A.4) 

Eq. (A.3) demonstrates that σ̄i j ( x ) is the work conjugate of the vir- 

tual macroscopic strain δε̄ i j ( x ) in the virtual macroscopic density 

function and (A.4) shows that the macroscopic stress σ̄i j ( x ) is the 

average of stress on RVE. The governing equation in RVE is then 

achieved by setting δε̄ i j ( x ) = 0 in (A.2) ∫ 
��

σi j ( x , y ) δ ˜ ε i j ( y ) d� = 0 (A.5) 

The boundary condition of the above equation is applied accord- 

ing to constraint (5) . It is proved that with the periodic boundary 

conditions on the opposite sides of RVE, (5) holds automatically. 

Appendix B. Boundary conditions of RVE 

In order to guarantee Eq. (20) , appropriate essential/natural 

boundary conditions should be selected. The unknown traction 
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Fig. B.21. Unit normal vectors on the boundary of RVE. � n ∂ �
k = n ∂ �

k 

i 
and � t ∂ �

k = t ∂ �
k 

i 

are n i and t i on the surface ∂�k , respectively. 

field t i on ∂� is defined using the unknown stress tensor λij ( y ) 

with t i = λi j n j . λij is calculated in a way that (20) is held automati- 

cally. Hence, the equilibrium equation on the RVE can be expressed 

as 

σi j, j ( y ) = 0 y ∈ �� (B.1a) 

σi j ( y ) n j = λi j n j y ∈ ∂� = 

4 ⋃ 

k =1 

∂ �k (B.1b) 

∫ 
∂�

u 1 i λi j n j d� = 0 (B.1c) 

n j is the unit normal vector to the boundary, as depicted in 

Fig. B.21 . (B.1c) represents the constraint (20) and (B.1b) is the nat- 

ural boundary condition in terms of λij ( y ). 

The weak form of equations (B.1) is expressed with 

−
∫ 

��

w 

1 
i, j σi j d� + 

∫ 
∂�

w 

1 
i λi j n j d� + 

∫ 
∂�

u 1 i δλi j n j d� = 0 

(∀ w 

1 
i ∈ V W 

1 & ∀ δλi j ∈ V λ) (B.2) 

or equivalently, 

−
∫ 

��

w 

1 
i, j σi j d� + 

∫ 
∂�

w 

1 
i λi j n j d� = 0 ∀ w 

1 
i ∈ V W 

1 (B.3a) 

∫ 
∂�

u 1 i δλi j n j d� = 0 ∀ δλi j ∈ V λ (B.3b) 

where V W 

1 and V λ1 are the space of all admissible functions of w 

1 
i 

and δλij , respectively. Different types of boundary conditions can 

be achieved based on the space of V λ in (B.3b) : 

1. Constant stress: If V λ includes only constant functions, (B.3b) is 

simplified to 

δλi j 

∫ 
∂�

u 1 i n j d� = 0 ⇒ 

∫ 
∂�

u 1 i n j d� = 0 (B.4) 

(B.4) is the minimal kinematic boundary condition. 

2. Periodic stress: If V λ includes all admissible periodic functions 

defined with 

V λ = 

{
λi j ( y ) defined in ��

∣∣λi j ( y ) , Y −periodic and smooth enough 
}

(B.5) 

(B.3b) is reduced to ∫ 
∂�= ∂�1 ∪ ∂�2 ∪ ∂�3 ∪ ∂�4 

u 1 i δλi j n j d� = 0 

⇒ 

∫ 
∂�1 

u 1 i 

(
y ∂�

1 
)
δλi j 

(
y ∂�

1 
)
n ∂�

1 

i d�

+ 

∫ 
∂�2 

u 1 i 

(
y ∂�

2 
)
δλi j 

(
y ∂�

2 
)
n ∂�

2 

i d�

+ 

∫ 
∂�3 

u 1 i 

(
y ∂�

3 
)
δλi j 

(
y ∂�

3 
)
n ∂�

3 

i d�

+ 

∫ 
∂�4 

u 1 i 

(
y ∂�

4 
)
δλi j 

(
y ∂�

4 
)
n ∂�

4 

i d� = 0 (B.6) 

where y ∂�k ∈ ∂�k and n ∂�k 

i 
are depicted in Figure B.21 . Defin- 

ing Y h and Y v 

y ∂�
2 = y ∂�

1 + Y h (B.7a) 

y ∂�
4 = y ∂�

3 + Y v (B.7b) 

and using 

δλi j 

(
y ∂�

1 
)

= δλi j 

(
y ∂�

2 
)

(B.8a) 

δλi j 

(
y ∂�

3 
)

= δλi j 

(
y ∂�

4 
)

(B.8b) 

Eq. (B.6) can be rearranged due to the periodicity of λij , ∫ 
∂�1 

δλi j 

(
y ∂�

1 
)[ 

u 1 i 

(
y ∂�

1 
)

− u 1 i 

(
y ∂�

1 + Y h 

)] 
n ∂�

1 

i d�

+ 

∫ 
∂�3 

δλi j 

(
y ∂�

3 
)[ 

u 1 i 

(
y ∂�

3 
)

− u 1 i 

(
y ∂�

3 + Y v 

)] 
n ∂�

3 

i d� = 0 

(B.9) 

Having employed functional principals, the final periodic dis- 

placement on u 1 
i ( y ) are derived as 

u 1 i 

(
y ∂�

1 
)

− u 1 i 

(
y ∂�

1 + Y h 

)
= 0 ⇒ u 1 i 

(
y ∂�

1 
)

= u 1 i 

(
y ∂�

2 
)
(B.10a) 

u 1 i 

(
y ∂�

3 
)

− u 1 i 

(
y ∂�

3 + Y v 

)
= 0 ⇒ u 1 i 

(
y ∂�

3 
)

= u 1 i 

(
y ∂�

4 
)
(B.10b) 

3. Homogeneous boundary condition: if V λ encompasses all admis- 

sible functions on ��, (B.3b) results in 

u 1 i ( y ) n j = 0 y ∈ ∂� (B.11) 

Appendix C. XFEM displacement field 

Defining a new enriched DOF ă k 
i 

ˆ a k i = βi + ă k i (C.1) 

and substituting (C.1) into equation (21) , relation (C.2) is obtained 

as 
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˜ u i ( y ) = 

n stn ∑ 

k =1 

N k ̂  u k i + 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] 
(
βi + ă k i 

)
= 

n stn ∑ 

k =1 

N k ̂  u k i + 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] βi 

+ 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] ̆a 
k 
i 

= 

n stn ∑ 

k =1 

N k ̂  u k i + 

( 

n en ∑ 

k =1 

N k 

) 

︸ ︷︷ ︸ 
=1 

H ( ξ ( y ) ) βi −
( 

n en ∑ 

k =1 

N k H ( ξ ( y k ) ) 

) 

︸ ︷︷ ︸ 
= ∑ 

k = { n + en } 
N k 

βi 

+ 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] ̆a 
k 
i 

= 

n stn ∑ 

k =1 

N k ̂  u k i + 

⎛ 

⎝ H ( ξ ( y ) ) −
∑ 

k = { n + en } 
N k 

⎞ 

⎠ βi 

+ 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] ̆a 
k 
i (C.2) 

where 
{
n + en 

}
is the set of nodes in which H ( ξ ( y k )) > 0, and ξ ( y ) has 

been defined in (23) . The final form of this equation is expressed 

as, 

˜ u i ( y ) = ( H ( ξ ( y ) ) − ϕ ( y ) ) βi + 

n stn ∑ 

k =1 

N k ̂  u k i 

+ 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] ̆a 
k 
i (C.3) 

where 

ϕ ( y ) = 

∑ 

k = { n + en } 
N k (C.4) 

or in the simple form of 

˜ u i ( y ) = u ∗i ( y ) + u 1 i ( y ) (C.5) 

where 

u ∗i ( y ) = ( H ( ξ ( y ) ) − ϕ ( y ) ) βi (C.6a) 

u 1 i ( y ) = 

n stn ∑ 

k =1 

N k ̂  u k i + 

n en ∑ 

k =1 

N k [ H ( ξ ( y ) ) − H ( ξ ( y k ) ) ] ̆a 
k 
i (C.6b) 

H (.) and ϕ(.) are depicted in Fig. 3 . It should be emphasized that 

the displacement field u 1 
i ( y ) remains discontinuous and is solved 

using the XFEM discretization. It also requires additional Gauss in- 

tegration points, which are provided by the sub-triangulation inte- 

gration technique. 

Appendix D. Derivation of equation 49 

The Complementary displacement field can be expressed with 

(46) 

˜ u i ( y ) = u h i ( y ) + F ik γk ( y ) (D.1) 

From the compatibility conditions of continuum mechanics, the 

complementary strain field is 

˜ ε i j = 

˜ u ( i, j ) = 

u i, j + u j,i 

2 
= 

u h 
i, j 

+ u h 
j,i 

2 ︸ ︷︷ ︸ 
u h 

( i, j ) 

+ 

( F ik γk ) , j + 

(
F jk γk 

)
,i 

2 ︸ ︷︷ ︸ 
T 

(D.2) 

Expanding the term T in (D.2) 

T = 

( F ik γk ) , j + 

(
F jk γk 

)
,i 

2 
= 

(
F ik, j γk + F ik γk, j 

)
+ 

(
F jk,i γk + F jk γk,i 

)
2 

= 

F ik, j γk + F jk,i γk 

2 ︸ ︷︷ ︸ 
T 1 

+ 

F ik γk, j + F jk γk,i 

2 ︸ ︷︷ ︸ 
T 2 

(D.3) 

and employing 

T 1 = 

F ik, j γk + F jk,i γk 

2 
= 

F ik, j + F jk,i 

2 ︸ ︷︷ ︸ 
F ( ik, j ) 

γk = F ( ik, j ) γk (D.4a) 

T 2 = 

F ik γk, j + F jk γk,i 

2 
= 

f enr δik γk, j + f enr δ jk γk,i 

2 
= 

f enr δik γk, j + f enr γ j,i 

2 

= 

f enr δik γk, j + f enr δik γ j,k 

2 
= f enr δik ︸ ︷︷ ︸ 

F ik 

γk, j + γ j,k 

2 ︸ ︷︷ ︸ 
γ( k, j ) 

= F ik γ( k, j ) 

(D.4b) 

substituting (D.4a) and (D.4b) into (D.3) and using (D.2) with 

˜ ε i j ( y ) = u h ( i, j ) ( y ) + F ik γ( k, j ) ( y ) + F ( ik, j ) γk ( y ) (D.5) 

the final relation (D.5) is obtained, which is similar to (49) . It 

should be noted that relation (47) is used in expanding (D.4b) . 

Appendix E. Coupled micro-macro solution procedure 

In the present formulation, the macroscopic coupled constitu- 

tive tensor is derived using the unit linear perturbation of kine- 

matic macroscopic variables in (36) ( Yuan and Fish, 2008 ). A typ- 

ical 2D coupled constitutive matrix in 2D problem can be derived 

in matrix notation as {
�
 σ

�
 γ

}
= 

[
[ C σ−ε ] [ C σ−β ] 

[ C γ −ε ] [ C γ −β ] 

]{
�
 ε 
�
 β

}
(E.1) 

where 

�
 σ = 

{ 

σ11 

σ22 

σ12 

} 

, �
 ε = 

{ 

ε 11 
ε 22 
2 ε 12 

} 

, �
 γ = 

{
γ1 

γ2 

}
, �

 β = 

{
β1 

β2 

}
(E.2) 

with nonzero off-diagonal terms. Procedures of solving the cou- 

pled macro and micro equations at micro and macro levels, are 

presented in the following. 

Solution algorithm in the RVE level 

For each RVE: 

• Step 1. Given the macroscopic strain ε̄ i j and the macroscopic 

kinematic variable β i from macro solution, find the micro 

fluctuation field u 1 
i ( y ) from (36) and the boundary condition 

(37a) with the constraint (37b) on crack surface. 

Note 1: An iterative solution should be adopted for nonlinear 

cases in this step. 

Note 2: ε̄ i j and β i are required for solving Eq. (36) , due 

to the fact that σ ij is a function of ε̄ i j , β i and u 
1 
( i, j ) 

(i.e. 

σi j ( ̄ε i j , βi , u 
1 
( i, j ) 

(y ) ) ). 

• Step 2. Find the macroscopic work conjugates σ̄i j and γ i from 

(16) and (33) , respectively. 

• Step 3. Compute the tangential macroscopic constitutive matrix 

by the unit linear perturbation of ε̄ i j and β i in the form of Eq. 

(E.1) . 
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Solution algorithm in the macroscopic level 

• Step 1. Given the initial tangential constitutive matrix (pre- 

sented symbolically in Eq. (E.1) ), find the initial values of ε̄ i j 
and β i by solving (44) 

• Step 2. Given ε̄ i j and β i from the previous step, compute σ̄i j 

and γ i from solution algorithm in RVE level. 

• Step 3. Compute the macroscopic residual force r i as 

r i = 

∫ 
�

(
σ̄i j δε̄ i j + γi δβi 

)
d� −

∫ 
�

( b i δū i + B i δβi ) d� −
∫ 
�t 

t i δū d�

(E.3) 

• Step 4. check the convergence criterion: norm ( r i ) < tol , and go 

to the Step1 1 if necessary. 
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